GCE MARKING SCHEME

MATHEMATICS - M1-M3 \& S1-S3 AS/Advanced

SUMMER 2014

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2014 examination in GCE MATHEMATICS - M1-M3 \& S1-S3. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Page
M1 1
M2 9
M3 16
S1 24
S2 28
S3 31

Apply N2L to crate
$25 g-R=25 \times 1.2$

$$
R=\underline{215(\mathrm{~N})}
$$

1(b) $R=25 g=\underline{245(\mathrm{~N})}$

Mark
Notes

M1 $\quad R$ and $25 g$ opposing. Dim. Correct
A1 correct equation Any form

A1

B1

Q
Solution

2(a) Use of $v=u+a t$ with $u=10, v=24, t=21$
$24=10+21 a$
$a=\frac{2}{3}\left(\mathrm{~ms}^{-2}\right)$

M1
A1
A1 accept anything derived
from $\frac{2}{3}$ rounded correctly

M1 oe

A1
A1

Mark
Notes

2(c)

B1 $(0,10)$ to $(21,24)$
B1 $(21,24)$ to $(21+T, 24)$
B1 $(21+T, 24)$ to $(37+T, 0)$
B1 all labels, units and shape.

2(d) Area under graph $=15000$

$$
0.5(10+24) 21+24 T+192=15000
$$

$24 T=14451$
$T=\underline{602(.125)}$
2(b) $\quad s=\frac{1}{2}(u+v) t$ with $v=0, u=24, t=16$
$s=\frac{1}{2} \times 24 \times 16$
$s=\underline{192(\mathrm{~m})}$

M1 used
A1 ft (b)
B1 $0.5(10+24) 21$ or $24 T$
Ft graph
A1 Accept 600 from correct working. Cao.

Q Solution

.

3(a) Resolve perpendicular to plane

$$
\begin{aligned}
& R=m g \cos \alpha \\
& F=\mu m g \cos \alpha \\
& F=0.6 \times 7 \times 9.8 \times \frac{4}{5} \\
& F=\underline{32.9(28 \mathrm{~N})}
\end{aligned}
$$

M1 $\quad \sin / \cos$
m1 correct expression

A1 Accept rounding to 32.9.

3(b) Apply N2L to A

$$
\begin{aligned}
& T+m g \sin \alpha-F=7 a \\
& T+41.16-32.928=7 a \\
& T+8.232=7 a
\end{aligned}
$$

Apply N2L to B
$3 g-T=3 a$
$3 g+8.232=10 a$
$a=\underline{3.7\left(632 \mathrm{~ms}^{-2}\right)}$
$T=\underline{18.1(104 \mathrm{~N})}$

Mark
Notes

M1 dim correct equation Friction opposes motion 4 terms. Accept cos.
A1 $\mathrm{ft}(\mathrm{a})$

M1 dim correct equation A1
m1 one variable eliminated Dep on both M's

A1 cao
A1 cao

Q
Solution
4.

Take moments about C
$0.4 R_{D}=3 g \times 0.6+12 g \times 1.5$
$0.4 R_{D}=19.8 \mathrm{~g}=194.04$
$R_{D}=49.5 g=\underline{485.1(\mathrm{~N})}$

Resolve vertically
$R_{D}=R_{C}+15 g$
$R_{C}=34.5 \mathrm{~g}=\underline{338.1(\mathrm{~N})}$

Alternative solution
Moment equation about $A /$ centre $/ B$
Correct equation
Second moment equation
Correct equation
Correct method for solving simultaneously m

$$
\begin{aligned}
& R_{C}=34.5 g=338.1(\mathrm{~N}) \\
& R_{D}=49.5 \mathrm{~g}=\underline{485.1(\mathrm{~N})}
\end{aligned}
$$

Notes

Mark

M1 B1 M1 A1

A1
B1 any 1 correct moment.
M1
A1 correct equ any form
A1 cao
equation attempted.
Or $2^{\text {nd }}$ moment equation.
cao
dim correct equation. oe

Dep on both M's
A1 cao
A1 cao

Q Solution

5(a) Resolve perpendicular to motion
$20 \sin 60+T \sin 30=28 \sin 60$
$20 \frac{\sqrt{3}}{2}+\mathrm{T} \times \frac{1}{2}=28 \frac{\sqrt{3}}{2}$
$T=\underline{8 \sqrt{ } 3}$

5(b) N 2 L in direction of motion
$20 \cos 60+T \cos 30+28 \cos 60-16=80 a$
$20 \times \frac{1}{2}+8 \sqrt{3} \times \frac{\sqrt{3}}{2}+28 \times \frac{1}{2}-16=80 a$ $a=\underline{0.25\left(\mathrm{~ms}^{-2}\right)}$

5(c) N2L $-16=80 a$
$a=-0.2$
Use of $v=u+a t, v=4, u=12, a=(+/-) 0.2$ $4=12-0.2 t$ $t=\underline{40(\mathrm{~s})}$

Mark
Notes

M1
A1
A1 convincing

M1 dim correct all forces and No extra force
A2 -1 each error

A1 cao

M1 no extra force
A1 accept +/-
m1
A1 ft if $a<0$
A1 ft if $\mathrm{a}<0$

Q Solution

6(a)

Conservation of momentum
$2 \times 3-7 \times 5=3 v_{A}+7 v_{B}$
$3 v_{A}+7 v_{B}=-29$
Restitution
$v_{B}-v_{A}=-0.6(-5-2)$
$v_{B}-v_{A}=4.2$
$-7 v_{A}+7 v_{B}=29.4$
$3 v_{A}+7 v_{B}=-29$
$10 v_{A}=-58.4$
$v_{A}=(-) 5.84$
$v_{B}=(-) 1.64$

6(b) Impulse $=$ change of momentum
$I=7 v_{B}-7(-5)$
$I=-11.48+35$
$I=\underline{23.52(\mathrm{Ns})}$

6(c) $\quad 3.65=e(5.84)$
$e=\underline{0.625}$

Mark
Notes

M1 equation required Only one sign error. Ignore common factors
A1

M1 v_{B}, v_{A} opposing consistent with diagram, +/-7 with the 0.6 . Dep on both M's.
A1 cao
A1 cao

M1 used

A1 ft their v_{A} or v_{B}

B1 ft v_{A} if >3.65.

Q
Solution
Mark
Notes
7.

Resolve horizontally
$T_{A B} \sin 60=T_{A C} \sin 45$
$\frac{\sqrt{3}}{2} T_{A B}=\frac{1}{\sqrt{2}} T_{A C}$
$T_{A B}=\sqrt{\frac{2}{3}} T_{A C}$
Resolve vertically
$T_{A B} \cos 60+T_{A C} \cos 45=9 g$
$T_{A B}+\sqrt{2} T_{A C}=18 g$
$\sqrt{\frac{2}{3}} T_{A C}+\sqrt{2} T_{A C}=18 g$
$T_{A C}=79 .(078)(\mathrm{N})$
$T_{A B}=\underline{64 .(567)(\mathrm{N})}$

Alternative Method
Third angle $75^{\circ} / 105^{\circ}$

$$
\begin{aligned}
& \frac{T_{A B}}{\sin 45}=\frac{9 g}{\sin 75} \\
& T_{A B}=\frac{9 g \times \sin 45}{\sin 75} \\
& T_{A B}=\underline{64 .(567)(\mathrm{N})} \\
& \frac{T_{A C}}{\sin 60}=\frac{9 g}{\sin 75} \\
& T_{A C}=\frac{9 g \times \sin 60}{\sin 75} \\
& T_{A C}=\underline{79 .(078)(\mathrm{N})}
\end{aligned}
$$

M1 A1

A1 cao allow 79
A1 cao allow 65

M1 sine rule attempted
A1 si
A1 cao allow 65

M1 sine rule attempted
A1 si
A1 cao allow 79

Q		Solut			Mark	Notes
8(a)		mass	$A D$	$A B$		
	$A B C D$	72	6	3	B1	
	$X Y Z$	12	6	2	B1	
	E	24	3	4		
	F	36	9	4	B1	both E and F correct
	Jewel	120	x	y	B1	masses in correct proportions.
8(a)(i)	Moments about $A D$				M1	masses and moments consistent.
	$\begin{aligned} & 120 x+12 \times 6=72 \times 6+24 \times 3+36 \times 9 \\ & 120 x=756 \end{aligned}$				A1	ft table if triangle subt.
	$x=\frac{63}{10}=\underline{6.3(\mathrm{~cm})}$				A1	cao
8(a)(ii) Moments about $A B$					M1	masses \& moments consistent
	$\begin{aligned} & 120 y+12 \times 2=72 \times 3+24 \times 4+36 \times 4 \\ & 120 y=432 \end{aligned}$				A1	$\mathrm{ft} \mathrm{table} \mathrm{if} \mathrm{triangle} \mathrm{subt}$.
	$y=\frac{18}{5}=\underline{3.6(\mathrm{~cm})}$				A1	cao
8(b)	$\begin{aligned} & P C=12-x \\ & P C=5.7(\mathrm{~cm}) \end{aligned}$					
					B1	ft their x if < 12 .

1(a) $\quad \mathrm{EE}=\frac{1}{2} \times \frac{\lambda x^{2}}{l}, \lambda=625, x=(+/-) 0.1, l=0.2$
$\mathrm{EE}=\frac{1}{2} \times \frac{625 \times 0 \cdot 1^{2}}{0 \cdot 2}$
$\mathrm{EE}=\underline{15.625(\mathrm{~J})}$
A1

1(b) $\mathrm{KE}=\frac{1}{2} \times 0 \cdot 8 v^{2}\left(=0.4 v^{2}\right)$
WD by resistance $=46 \times 0.1(=4.6)$
Work-energy Principle
$\frac{1}{2} 0.8 v^{2}+46 \times 0.1=15.625$
$0.4 v^{2}=15.625-4.6$
$0.4 v^{2}=11.025$
$v=\sqrt{\frac{11 \cdot 025}{0.4}}$
$v=5.25\left(\mathrm{~ms}^{-1}\right)$

M1 3 terms, no PE.
B1
B1

A1 FT their EE

A1 cao

Q
Solution

2(a) $F-R=m a$
used, F and R opposing.
A1
Answer given

M1 Ft (a) if same form

A1 cao, accept 0.3.

M1 Increase in powers A1
m1
m1
m1 recognition of quadratic Some attempt to solve.

A1 cao

Q
Solution

3(a) $T=\frac{P}{v}, P=90 \times 1000, v=4.8$
$T=\frac{90 \times 1000}{4 \cdot 8}$
$T=18750$
N2L
$T-m g \sin \alpha-R=m a$
$18750-4000 \times 9.8 \times \frac{2}{49}-R=4000 \times 1.2 \quad$ A1
$R=18750-1600-4800$
$R=\underline{12350(\mathrm{~N})}$

3(b) N2L with $a=0$
$T=\frac{90 \times 1000}{v}$
$T-1600-12800=0$
$v=\underline{6.25 \mathrm{~ms}^{-1}}$

M1 dim correct, all forces T, R opposing.
A1

M1 all forces.
Mark
Notes

M1 si

A1 si
A1 cao

B1 si
A1
A1

Q Solution

4(a) $\quad \mathbf{r}=\mathbf{p}+t \mathbf{v}$

$$
\mathbf{r}_{A}=(3-t) \mathbf{i}+(5+2 t) \mathbf{j}+(20+t) \mathbf{k}
$$

$$
\mathbf{r}_{B}=(-2+3 t) \mathbf{i}+(x-4 t) \mathbf{j}+(15+2 t) \mathbf{k}
$$

4(b) $\quad \mathbf{r}_{B}-\mathbf{r}_{A}=$

$$
(-5+4 t) \mathbf{i}+(x-5-6 t) \mathbf{j}+(-5+t) \mathbf{k}
$$

A1 ft (a) similar expressions.

$$
A B^{2}=x^{2}+y^{2}+z^{2}
$$

M1

$$
A B^{2}=(-5+4 t)^{2}+(x-5-6 t)^{2}+(-5+t)^{2}
$$

A1 cao

4(c) Differentiate

$$
\begin{aligned}
& \frac{d A B^{2}}{d t}=2(-5+4 t)(4)+2(x-5-6 t)(-6) \\
& \quad+2(-5+t)(1) \\
& -40+32 t-12 x+60+72 t-10+2 t=0 \\
& 106 t+10=12 x \\
& \text { When } t=5 \\
& x=\underline{45}
\end{aligned}
$$

M1 powers reduced
m 1 equating to 0 .

A1
cao

5(a) $\quad u_{H}=\frac{42}{2 \cdot 5}=\underline{16.8\left(\mathrm{~ms}^{-1}\right)}$
B1
$s=u_{V} t+0.5 a t^{2}, s=3, t=2.5, a=(\pm) 9.8 \quad$ M1
$3=2.5 u_{V}-4.9 \times 2.5^{2}$
A1
$u_{V}=13.45\left(\mathrm{~ms}^{-1}\right) \quad \mathrm{A} 1$
cao, accept 13.4, 13.5.

5(b) $v_{V}=u_{V}+a t, u_{V}=13.45, a=(\pm) 9.8, t=2.5$ M1
$v_{V}=13.45-9.8 \times 2.5$
A1 ft from (a)
$v_{V}=-11.05$
magnitude of vel $=\sqrt{u_{H}{ }^{2}+v_{V}{ }^{2}} \quad \mathrm{~m} 1$ $=\underline{20.11\left(\mathrm{~ms}^{-1}\right)}$

A1 cao
$\theta=\tan ^{-1}\left(\frac{11 \cdot 05}{16 \cdot 8}\right)$
m1
$\theta=\underline{33.33^{\circ}}$ (below horizontal)
A1 cao

5(c)
$s=u t+0.5 a t^{2}, s=0, u=13.45, a=(\pm) 9.8 \quad$ M1
$0=13.45 t-4.9 t^{2}$
$t=2.7449$

Distance $=2.7449 \times 16.8 \quad \mathrm{~m} 1$
Distance $=46.11$
Required distance $=46.11-42=\underline{4.11(m)}$ A1 cao

Q
Solution

6(a) $\mathbf{a}=\frac{d v}{d t}$
$\mathbf{a}=8 \cos 2 t \mathbf{i}-75 \sin 5 t \mathbf{j}$
At $t=\frac{3 \pi}{2},(\mathbf{a}=-8 \mathbf{i}+75 \mathbf{j})$
Magnitude of force $=3 \times \sqrt{8^{2}+75^{2}}$

$$
=\underline{226.28(\mathrm{~N})}
$$

6(b) $\quad \mathbf{r}=\int 4 \sin 2 t \mathbf{i}+15 \cos 5 t \mathbf{j} \mathrm{~d} t$
$\mathbf{r}=-2 \cos 2 t \mathbf{i}+3 \sin 5 t \mathbf{j}(+\mathbf{c})$
At $t=0$,
$-2 \mathbf{i}+3 \mathbf{j}=-2 \mathbf{i}+\mathbf{c}$
$\mathbf{c}=3 \mathbf{j}$
$\mathbf{r}=-2 \cos 2 t \mathbf{i}+3 \sin 5 t \mathbf{j}+3 \mathbf{j}$

6(c) Particle crosses the y-axis when
$-2 \cos 2 t=0$
$2 t=\frac{\pi}{2}$
$t=\frac{\pi}{4}$

Distance from origin $=3 \sin \left(5 \times \frac{\pi}{4}\right)+3$

$$
=\underline{0.88(\mathrm{~m})}
$$

Mark
Notes

M1 differentiation attempted.
Vectors required.
A1
$\mathrm{m} 1 \quad$ substitution of t.
M1
A1 cao

M1 integration attempted

M1
m1
A1

A1 cao
m1
A1
cao
substitute t into \mathbf{r}

Q

 SolutionMark

M1
A1
$0.5 m(4 u)^{2}=m g(2 l)+0.5 m u^{2}$
$16 u^{2}=4 g l+u^{2}$
$u^{2}=\frac{4}{15} g l$

7(b)(i) Conservation of energy
M1
$0.5 m(4 u)^{2}=0.5 m v^{2}+m g l(1-\cos \theta)$
$v^{2}=16 u^{2}-2 g l+2 g l \cos \theta$
$v^{2}=\frac{34}{15} g l+2 g l \cos \theta$
N2L towards centre of circle M1
$T-m g \cos \theta=\frac{m v^{2}}{l}$
$T=\frac{34}{15} m g+3 m g \cos \theta$
$T=\frac{m g}{15}(34+45 \cos \theta)$

7(b)(ii) when $T=0, \cos \theta=-\frac{34}{45}$
$\theta=139.1^{\circ}$

M
A1 $\mathrm{Ft} \cos =\mathrm{a}, \mathrm{a}<0$.

Q
Solution

1(a) $\quad \mathrm{N} 2 \mathrm{~L} \quad 500-100 v=1200 \frac{\mathrm{~d} v}{\mathrm{~d} t}$

$$
\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{500-100 v}{1200}=\frac{5-v}{12}
$$

1(b) $\int 12 \frac{\mathrm{~d} v}{5-v}=\int d t$
$-12 \ln (5-v)=t+(\mathrm{C})$
When $t=0, v=0, \mathrm{C}=-12 \ln 5$
$t=12 \ln \left(\frac{5}{5-v}\right)$
$\frac{5}{5-v}=e^{\frac{t}{12}}$
$v=5\left(1-\mathrm{e}^{-t / 12}\right)$
limiting speed $=5\left(\mathrm{~ms}^{-1}\right)$

1(c) When $v=4, t=12 \ln \left(\frac{5}{5-4}\right)$ $t=12 \ln 5(=19.31 \mathrm{~s})$

Mark

M1

A1 convincing

M1 sep. var. (5-v) together.
A1 correct integration
m1 allow +/-, oe
m1 inversion ft similar exp.
A1 cao
B1 Ft similar expression

A1 cao

Q
Solution
Mark
Notes

2(a) Period $=\frac{2 \pi}{\omega}=2$
$k=\omega=\pi$

2(b) $x=0.52 \cos \pi t$
When $t=\frac{1}{3}, x=0.52 \cos \frac{\pi}{3}$
$x=0.26$

2(c) $0.4=0.52 \cos \pi t$
$\cos \pi t=\underline{0.4}$
0.52
$t=0.22$
$t=1.78$

2(d) $\quad v^{2}=\omega^{2}\left(0.52^{2}-x^{2}\right)$
$v^{2}=\pi^{2}\left(0.52^{2}-0.2^{2}\right)$
$v=\pi(0.48)\left(=1.508 \mathrm{~ms}^{-1}\right)$

2(e) $\max v=a \omega$
$=0.52 \pi\left(=1.634 \mathrm{~ms}^{-1}\right)$

M1 A1

B1 for amp $=0.52$
M1 allow asin/acos, c's a
A1 cao

M1 allow \sin / \cos

A1 cao
A1 FT t,ie 2-first t.

M1 used. oe
m1 sub $x=0.2$
A1 cao

M1 used
A1 cao

Q
Solution

Impulse $=$ change in momentum
$J=2 u \cos 30-2 v$
$J=3 v$
Eliminating J
m1
$3 v=2 u \cos 30-2 v$
$5 v=2 u \cos 30$
$v=0.4 u \cos 30$
$v=2.77\left(\mathrm{~ms}^{-1}\right)($ speed of $A)$
$J=1.2 u \cos 30=8.31(\mathrm{Ns})$
$u_{B}=u \sin 30=4\left(\mathrm{~ms}^{-1}\right)$
Speed of $B=\sqrt{ }\left(2.77^{2}+4^{2}\right)$
Speed of $B=4.87\left(\mathrm{~ms}^{-1}\right)$

B1
m1
A1

Mark
Notes

3
one variable eliminated

A1 cao
A1 ft $3 x$ c's v.

M1
A1
B1
used
1
cao

Q

Solution

4(a) Auxiliary equation
$2 \mathrm{~m}^{2}+6 \mathrm{~m}+5=0$
B1
$\mathrm{m}=-1.5 \pm 0.5 \mathrm{i}$
C.F. is $x=\mathrm{e}^{-1.5 t}(\mathrm{~A} \sin 0.5 t+B \cos 0.5 t)$

For PI, try $x=\mathrm{a}$
$5 \mathrm{a}=1$
$\mathrm{a}=0.2$
GS is $x=\mathrm{e}^{-1.5 t}(\mathrm{~A} \sin 0.5 t+\mathrm{B} \cos 0.5 t)+0.2$
B1

4(b) $\quad \mathrm{e}^{-1.5 t} \rightarrow 0$ as $t \rightarrow \infty$
x tends to 0.2 as t tends to infinity Limiting value $=0.2$

4(c)(i) $\begin{aligned} x & =0.5 \text { and } \frac{\mathrm{d} x}{\mathrm{~d} t}=0 \text { when } t=0 \\ & \mathrm{~B}+0.2=0.5 \\ \mathrm{~B} & =0.3\end{aligned}$
$\frac{\mathrm{d} x}{\mathrm{~d} t}=-1.5 \mathrm{e}^{-1.5 t}(\mathrm{~A} \sin 0.5 t+\mathrm{B} \cos 0.5 t)$ $+\mathrm{e}^{-1.5 t}(0.5 \mathrm{~A} \cos 0.5 t-0.5 \mathrm{~B} \sin 0.5 t)$
$0=-1.5 \mathrm{~B}+0.5 \mathrm{~A}$
$\mathrm{A}=3 \mathrm{~B}=0.9$
$x=\mathrm{e}^{-1.5 t}(0.9 \sin 0.5 t+0.3 \cos 0.5 t)+0.2$

4(c)(ii) When $t=\frac{\pi}{3}$

$$
\begin{aligned}
& x=\mathrm{e}^{-\pi / 2}\left(0.9 \sin \frac{\pi}{6}+0.3 \cos \frac{\pi}{6}\right)+0.2 \\
& x=0.348
\end{aligned}
$$

Mark

Notes

Q
Solution
Mark
Notes

5(a) Using $\mathrm{F}=\mathrm{ma}$
$1200(v+3)^{-1}=800 \mathrm{a}$
$2 v \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{3}{v+3}$

5(b) $\int 3 d x=\int 2 v(v+3) d v$
$3 x=\frac{2 v^{3}}{3}+3 v^{2}+(\mathrm{C})$
$x=0, v=0$, hence $\mathrm{C}=0$
When $v=3,3 x=18+27$
$x=15$

5(c) $\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{3}{2(v+3)}$
$\int 2(v+3) d v=\int 3 d t$
$v^{2}+6 v=3 t+(\mathrm{C})$
$t=0, v=0$, hence $\mathrm{C}=0$
When $v=3$
$3 t=9+18=27$
$t=9$
$5(\mathrm{~d})(\mathrm{i}) v^{2}+6 v-3 t=0$
$v=0.5\left(-6 \pm \sqrt{ }\left(6^{2}-4 \times-3 t\right)\right)$
$v=-3+\sqrt{ }(9+3 t)$
(ii) $\frac{\mathrm{d} x}{\mathrm{~d} t}=-3+(9+3 t)^{\frac{1}{2}}$
$x=-3 t+\frac{2}{9}(9+3 t)^{\frac{3}{2}}+(\mathrm{C})$
$x=0, t=0$, (hence $\mathrm{C}=-6$)
$x=-3 t+\frac{2}{9}(9+3 t)^{\frac{3}{2}}+(-6)$
When $t=7$
$x=-21-6+2 \times 30^{1.5} / 9=9.5148$
x is approximately 9.5
m1
A1 convincing

M1
M1
A1 convincing

M1 separate variables
A1 correct integration

B1

M1 recognition of quadratic And attempt to solve
si
A1

M1
A1 correct integration
m1

A1 cao

$$
\begin{array}{rlr}
5(\mathrm{~d})(\mathrm{ii)} v=-3+\sqrt{ }(9+3 t) & & \\
\text { When } t=7, v & =-3+\sqrt{ }(9+21) & \text { M1 } \\
v=-3+\sqrt{30} & \text { A1 } \quad \mathrm{si} \\
v=2.4723 & & \\
& & \text { m1 } \\
x & =\frac{2}{9}(-2.4723)^{3}+(2.4723)^{2} & \text { A1 } \quad \text { cao }
\end{array}
$$

Q

Solution

6(a)

Mark
Notes

B2 B1 if one error.
B0 more than one error.

M1 all forces
A1

M1 dim correct equation All terms

A4 -1 each incorrect term Accept $T=100$.

Resolve horizontally
$T+F=S$
$F=0.1 R=8.2 g$
$S=T+8.2 g$
$8(8.2 g+T) \sin 75-3 T \sin 75-48 g \cos 75$
$=70 g x \cos 75$
$5 T \sin 75=$
$48 g \cos 75-65.6 g \sin 75+70 g x \cos 75$
$T=100$
$x=5.53 \mathrm{~m}$

B1 $\mathrm{ft} R$
B1 $\mathrm{ft} F$

A1 cao

OR

Moments about A

$5 T \sin 75+12 g \times 4 \cos 75+70 g(8-x) \times \cos 75$
$+8 F \sin 75=8 R \cos 75$

$F=0.1 R=80.36 \mathrm{~N}$
$T=100$
$x=5.53 \mathrm{~m}$

M1 dim correct equation All terms

A5 -1 each incorrect term Accept $T=100$.
B1 $\mathrm{Ft} R$

A1 cao

6(d) Ladder modelled as a rigid rod.
B1

Ques	Solution	Mark	Notes
1(a) (b)	EITHER $\begin{aligned} \mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) & =\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cup \mathrm{~B}) \\ & =0.2 \end{aligned}$ This is not equal to $\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$ therefore not independent. OR Assume A, B are independent so that $\begin{aligned} \mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) & =\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B}) \\ & =0.58 \end{aligned}$ Since $P(A \cup B) \neq 0.58, A, B$ are not independent. $\begin{aligned} P\left(A \mid B^{\prime}\right) & =\frac{P\left(A \cap B^{\prime}\right)}{P\left(B^{\prime}\right)} \\ & =\frac{0.3-0.2}{0.6} \\ & =\frac{1}{6} \end{aligned}$	M1 A1 A1 M1 A1 A1 M1 A1 A1	Award M1 for using formula Award M1 for using formula Award M1 for using formula FT their $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$ if independence not assumed Accept Venn diagram
2	$\begin{gathered} n p=0.9, \quad n p q=0.81 \\ \text { Dividing, } q=0.9, p=0.1 \\ n=9 \end{gathered}$	$\begin{aligned} & \text { B1B1 } \\ & \text { M1A1 } \\ & \text { A1 } \end{aligned}$	
3(a) (b)	$\begin{aligned} & \mathrm{P}(1 \text { of each })= \\ & \begin{aligned} \frac{3}{9} \times \frac{3}{8} \times \frac{3}{7} \times 6 & \text { or }\binom{3}{1} \times\binom{ 3}{1} \times\binom{ 3}{1} \div\binom{ 9}{3} \\ & =\frac{9}{28} \end{aligned} \end{aligned}$ $\mathrm{P}(2$ particular colour and 1 different $)=$ $\begin{gathered} \frac{3}{9} \times \frac{2}{8} \times \frac{6}{7} \times 3 \text { or }\binom{3}{2} \times\binom{ 6}{1} \div\binom{ 9}{3} \\ =\frac{3}{14} \end{gathered}$ $\mathrm{P}(2 \text { of any colour and } 1 \text { different })=\frac{9}{14}$	M1A1 A1 M1A1 A1 B1	M1A0 if 6 omitted M1A0 if 3 omitted Allow 3/28 FT previous line
4(a) (b)	Let X denote the number of goals scored in the first 15 minutes so that X is $\operatorname{Po}(1.5)$ si $\begin{aligned} \mathrm{P}(X=2) & =\frac{\mathrm{e}^{-1.5} \times 1.5^{2}}{2!} \\ & =0.251 \\ \mathrm{P}(X>2) & =1-\mathrm{e}^{-1.5}\left(1+1.5+\frac{1.5^{2}}{2!}\right) \\ & =0.191 \end{aligned}$	B1 M1 A1 M1A1 A1	Award M0 if no working seen

Ques	Solution	Mark	Notes
$\begin{aligned} & 5(\mathrm{a}) \\ & \text { (i) } \end{aligned}$	Let $X=$ number of female dogs so X is $\mathrm{B}(20,0.55)$ $\begin{aligned} P(X=12) & =\binom{20}{12} \times 0.55^{12} \times 0.45^{8} \\ & =0.162 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	si Accept $0.4143-0.2520$ or $0.7480-0.5857$
(ii)	Let $Y=$ number of male dogs so Y is $\mathrm{B}(20,0.45)$ $\begin{aligned} & \mathrm{P}(8 \leq X \leq 16)=\mathrm{P}(4 \leq Y \leq 12) \\ & =0.9420-0.0049 \text { or } 0.9951-0.0580 \\ & \quad=0.9371 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1A1 } \\ & \text { A1 } \end{aligned}$	Award M0 if no working seen
(b)	Let $U=$ number of yellow dogs so $\begin{gathered} U \text { is } \mathrm{B}(60,0.05) \approx \mathrm{Po}(3) \\ \mathrm{P}(U<5)=0.8153 \end{gathered}$	M1 m1A1	
6(a)	$\begin{aligned} \mathrm{P}(\text { head }) & =\frac{3}{4} \times \frac{1}{2}+\frac{1}{4} \times 1 \\ & =\frac{5}{8} \end{aligned}$	$\begin{aligned} & \text { M1A1 } \\ & \text { A1 } \end{aligned}$	M1 Use of Law of Total Prob (Accept tree diagram)
(b)(i)	$\begin{aligned} \mathrm{P}(\mathrm{DH} \mid \text { head }) & =\frac{1 / 4}{5 / 8} \\ & =\frac{2}{5} \text { cao } \end{aligned}$	B1B1 B1	B1 num, B1 denom FT denominator from (a)
(ii)	EITHER $\begin{aligned} \mathrm{P}(\text { head }) & =\frac{3}{5} \times \frac{1}{2}+\frac{2}{5} \times 1 \\ & =\frac{7}{10} \end{aligned}$	M1A1 A1	M1 Use of Law of Total Prob (Accept tree diagram)
	$\begin{aligned} P(\text { Head }) & =\frac{3 / 4 \times 1 / 2 \times 1 / 2+1 / 4 \times 1}{5 / 8} \\ & =\frac{7}{10} \end{aligned}$	B1B1 B1	B1 num, B1 denom FT denominator from (a)

Ques	Solution	Mark	Notes
9(a)(i)	$\mathrm{P}(0.4 \leq X \leq 0.6)=\mathrm{F}(0.6)-\mathrm{F}(0.4)$ $=0.261$	M1 (ii) The median m satisfies $2 m^{3}-m^{6}=0.5$ $2 m^{6}-4 m^{3}+1=0$ $m^{3}=\frac{4 \pm \sqrt{8}}{4}(0.293)$ $m=0.664$	B1

Ques	Solution	Mark	Notes
1	$\begin{aligned} & \bar{x}=\frac{405.6}{8} \quad(=50.7) \\ & \text { SE of } \bar{X}=\frac{4}{\sqrt{8}} \quad(=1.4142 \ldots) \\ & 90 \% \text { conf limits are } \\ & 50.7 \pm 1.645 \times 1.4142 \ldots \\ & \text { giving }[48.4,53.0] \quad \text { cao } \end{aligned}$	B1 M1A1 M1A1 A1	M1 correct form, A1 correct z. Award M0 if no working seen
2(a) (b) (c)	$\begin{aligned} \text { Upper quartile } & =\text { mean }+0.6745 \times \mathrm{SD} \\ & =86.0 \end{aligned}$ Let $X=$ weight of an orange, Y =weight of a lemon $\begin{gathered} E(\Sigma X)=1984 \\ \operatorname{Var}(\Sigma X)=512 \\ z=\frac{2000-1984}{\sqrt{512}}=0.71 \\ \operatorname{Prob}=0.7611 \text { cao } \end{gathered}$ Let $U=X-3 Y$ $\begin{aligned} \mathrm{E}(U) & =-7 \\ \operatorname{Var}(U) & =64+9 \times 2.25=84.25 \end{aligned}$ We require $\mathrm{P}(U>0)$ $z=\frac{0+7}{\sqrt{84.25}}=0.76$ Prob $=0.2236$	M1 A1 B1 B1 M1A1 A1 M1 A1 M1A1 m1A1 A1	Award M0 if no working seen Award m0 if no working seen
$3(a)$ (b)	$H_{0}: \mu_{M}=\mu_{F} ; H_{1}: \mu_{M} \neq \mu_{F}$ Let $X=$ male weight, $Y=$ female weight $\begin{gathered} \left(\sum x=39.2 ; \sum y=46.6\right) \\ \bar{x}=4.9 ; \bar{y}=4.66 \end{gathered}$ SE of diff of means $=\sqrt{\frac{0.5^{2}}{8}+\frac{0.5^{2}}{10}}(0.237 \ldots)$ $\begin{aligned} \text { Test statistic } & =\frac{4.9-4.66}{0.237 \ldots} \\ & =1.01 \end{aligned}$ Prob from tables $=0.1562$ $p \text {-value }=0.3124$ Insufficient evidence to conclude that there is a difference in mean weight between males and females.	B1 B1B1 M1A1 m1 A1 A1 B1 B1	Award m0 if no working seen FT line above FT their p-value

Ques	Solution	Mark	Notes
4(a)(i)	$H_{0}: p=0.6 ; H_{1}: p<0.6$	B1	
(ii)	Let $X=$ Number of games won Under H_{0}, X is $\mathrm{B}(20,0.6)$ si Let $Y=$ Number of games lost Under H_{0}, Y is $\mathrm{B}(20,0.4)$ $\begin{aligned} p \text {-value } & =\mathrm{P}(X \leq 7 \mid(X \text { is } \mathrm{B}(20,0.6))) \\ & =\mathrm{P}(Y \geq 13 \mid Y \text { is } \mathrm{B}(20,0.4) \\ & =0.021 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Award M0 if no working seen
	Strong evidence to reject Gwilym's claim (or to accept Huw's claim).	B1	FT on p-value
(b)	X is now $\mathrm{B}(80,0.6)$ (under $\left.\mathrm{H}_{0}\right) \approx \mathrm{N}(48,19.2)$	B1B1	
	$\begin{gathered} p \text {-value }=\mathrm{P}(X \leq 37 \mid X \text { is } \mathrm{N}(48,19.2)) \\ 37.5-48 \end{gathered}$	M1	Award M0 if no working seen
	$z=\frac{37.5-48}{\sqrt{19.2}}$	A1	Award M1A0A1 for incorrect or no continuity correction
	= $=-2.40$	A1	No cc ; $z=-2.51, p=0.00604$
	$p \text {-value }=0.0082$ Very strong evidence to reject Gwilym's claim (or to accept Huw's claim).	$\begin{aligned} & \text { A1 } \\ & \text { B1 } \end{aligned}$	$36.5 ; z=-2.62, p=0.0044$ FT on p-value only if less than 0.01
5(a)	$E(X)=E(Y)=1.2$	B1	
	$\mathrm{E}(U)=\mathrm{E}(X) \mathrm{E}(Y)=1.44 \text { cao }$	B1	
(b)	$\operatorname{Var}(X)=\operatorname{Var}(Y)=0.96$	B1	FT their values from (a)
	$\begin{aligned} E\left(X^{2}\right)(& \left.=E\left(Y^{2}\right)\right)=\operatorname{Var}(X)+[E(X)]^{2}=2.4 \\ \operatorname{Var}(U) & =E\left(X^{2} Y^{2}\right)-[E(X Y)]^{2} \end{aligned}$	M1A1	FT their values from (a)
	$\begin{aligned} \operatorname{Var}(U) & =E\left(X^{2} Y^{2}\right)-[E(X Y)]^{2} \\ & =E\left(X^{2}\right) E\left(Y^{2}\right)-[E(X) E(Y)]^{2} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
	$\begin{aligned} & =E\left(X^{2}\right) E\left(Y^{2}\right)-[E(X) E(Y)]^{2} \\ & =3.69 \mathrm{cao} \end{aligned}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	
6(a)(i)	Under H_{0}, X is $\operatorname{Po}(15)$ si	B1	
	$P(X \leq 10)=0.1185 ; P(X \geq 20)=0.1248$	B1	Award B1 for either correct
	Significance level $=0.2433$	B1	
(ii)	X is now Poi(10)		
	$\mathrm{P}\left(\right.$ accept $\left.\mathrm{H}_{0}\right)=P(11 \leq X \leq 19)$	M1	Award M0 if no working seen
	$=0.9965-0.5830$ or $0.4170-0.0035$	A1	
	$=0.4135 \mathrm{cao}$	A1	
(b)	Under H_{0}, X is now $\operatorname{Po}(75) \approx \mathrm{N}(75,75)$	B1	
	$z=\frac{91.5-75}{\sqrt{75}}=1.91$	M1A1	Award M1A0 for incorrect or no continuity correction but FT
	Prob from tables $=0.0281$	A1	further work.
	p-value $=0.056$	A1	FT from line above
	Insufficient evidence to reject H_{0}	B1	FT from line above
			$\begin{aligned} & \text { No cc gives } z=1.96, p=.05 \\ & 92.5 \text { gives } z=2.02, p=0.0434 \end{aligned}$

Ques	Solution	Mark	Notes
7(a)	$\begin{aligned} \mathrm{P}(L \leq 4)= & \mathrm{P}\left(A \leq 4^{2}\right) \\ & =\frac{16-15}{20-15} \\ & =0.2 \end{aligned}$	M1 A1 A1	
(b)	$\begin{aligned} E(L) & =E\left(A^{1 / 2}\right) \\ & =\int_{15}^{20} a^{1 / 2} \times \frac{1}{5} \mathrm{~d} a \\ & =\frac{2}{15}\left[a^{3 / 2}\right]_{15}^{20} \\ & =4.18 \end{aligned}$	M1A1 A1 A1	Limits can be left until next line Do not accept $\sqrt{17.5}=4.18$
(c)	$\begin{aligned} \operatorname{Var}(L) & =E\left(L^{2}\right)-[E(L)]^{2} \\ & =17.5-4.18^{2} \\ & =0.03 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	FT their $\mathrm{E}(L)$

Ques	Solution	Mark	Notes
1	$\begin{aligned} & \quad \bar{x}=52.0 \mathrm{si} \\ & \text { Variance estimate }=\frac{162480}{59}-\frac{3120^{2}}{60 \times 59}=4.068 \\ & \text { (Accept division by } 60 \text { which gives 4.0) } \\ & 90 \% \text { confidence limits are } \\ & \quad 52 \pm 1.645 \sqrt{4.068 / 60} \\ & \quad \text { giving }[51.6,52.4] \end{aligned}$	B1 M1A1 M1A1 A1	
2(a)	$H_{0}: \mu=4.5 ; H_{1}: \mu \neq 4.5$	B1	
(b)	$\begin{aligned} & \sum x=43.6 ; \sum x^{2}=190.3428 \\ & \text { UE of } \mu=4.36 \\ & \begin{aligned} \text { UE of } \sigma^{2} & =\frac{190.3428}{9}-\frac{43.6^{2}}{90} \\ & =0.0274(22 \ldots) \end{aligned} \end{aligned}$	$\begin{array}{\|l} \text { B1B1 } \\ \text { B1 } \\ \\ \text { M1 } \\ \text { A1 } \end{array}$	No working need be seen Answer only no marks
(c)	$\begin{aligned} \text { test-stat } & =\frac{4.36-4.5}{\sqrt{0.0274222 . . / 10}} \\ & =-2.67 \quad(\text { Accept }+2.67) \\ \mathrm{DF} & =9 \mathrm{si} \\ \text { Crit value } & =3.25 \end{aligned}$ This result suggests that we should accept H_{0}, ie that the mean weight is 4.5 kg because $2.67<3.25$	M1A1 A1 B1 B1 B1 B1	FT their values from (b) Answer only no marks FT their t-statistic
3(a)	$\begin{gathered} \hat{p}=\frac{654}{1500}=0.436 \mathrm{si} \\ \mathrm{ESE}=\sqrt{\frac{0.436 \times 0.564}{1500}}=0.0128 . . \\ 95 \% \text { si } \\ 0.436 \pm 1.96 \times 0.0128 . . \\ \text { giving }[0.41,0.46] \end{gathered}$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { M1A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array}$	M1 correct form A1 correct z
	$\hat{p}=\frac{0.4348+0.4852}{2}=0.46$ Number of people $=0.46 \times 1200=552$ $\begin{gathered} 0.4852-0.4348=2 z \sqrt{\frac{0.46 \times 0.54}{1200}} \\ z=1.75 \end{gathered}$ Prob from tables $=0.0401$ or 0.9599 Confidence level $=92 \%$	B1 B1 M1A1 A1 A1 B1	FT line above

Ques	Solution	Mark	Notes
4(a) (b) (c)	$\begin{aligned} & H_{0}: \mu_{a}=\mu_{b} ; H_{1}: \mu_{a} \neq \mu_{b} \\ & \mathrm{SE}=\sqrt{\frac{0.115}{80}+\frac{0.096}{70}} \quad(=0.053) \\ & \text { Test stat }=\frac{3.65-3.52}{0.053} \\ & \quad=2.45 \quad(\text { Accept } 2.46) \\ & \text { Tabular value }=0.00714 \quad(0.00695) \\ & p \text {-value }=0.01428 \quad(0.0139) \end{aligned}$ Strong evidence to conclude that there is a difference in mean weight. Estimates of the variances of the sample means are used and not exact values. The sample means are assumed to be normally distributed (using the Central Limit Theorem).	B1 M1A1 M1A1 A1 A1 A1 B1 B1 B1	FT their p-value Accept the conclusion that the Variety B mean is greater than the Variety A mean
5(a)	$\begin{gathered} \sum x=42, \sum x^{2}=364, \sum y=340.6, \sum x y=2906.4 \\ S_{x y}=2906.4-42 \times 340.6 / 6=522.2 \\ S_{x x}=364-42^{2} / 6=70 \\ \quad b=\frac{522.2}{70}=7.46 \\ a=\frac{340.6-7.46 \times 42}{6}=4.55 \end{gathered}$	$\begin{array}{\|l} \hline \text { B2 } \\ \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	Minus 1 each error Answers only no marks
(b)(i) (ii)	Unbiased estimate $=a+5 b=41.85$ SE of $a+5 b=0.5 \sqrt{\frac{1}{6}+\frac{(5-7)^{2}}{70}} \quad(0.2365 \ldots)$ 95\% confidence limits for $\alpha+5 \beta$ are $41.85 \pm 1.96 \times 0.2365 \ldots$ giving [41.4,42.3]	B1 M1A1 m1A1 A1	FT their values of and a, b if answer between 33.9 and 49.9 And FT their value of $S_{x x}$
(iii)	Test stat $=\frac{7.6-7.46}{\sqrt{0.5^{2} / 70}}=2.34$ Critical value $=1.96$ or p -value $=0.01928$ We conclude that $\beta=7.6$ is not consistent with the tabular values.	M1A1 A1 B1	FT their values of b and $S_{x x}$ if possible. FT their test statistic FT the line above

WJEC
245 Western Avenue Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk website: www.wjec.co.uk

