

GCE MARKING SCHEME

MATHEMATICS - M1-M3 & S1-S3 AS/Advanced

SUMMER 2014

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2014 examination in GCE MATHEMATICS - M1-M3 & S1-S3. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

	Page
M1	1
M2	9
M3	16
S1	24
S2	28
S3	31

Q Solution Mark Notes 1(a) 1.2ms⁻² **▲***R* ▼ 25g *R* and 25*g* opposing. Dim. Correct Apply N2L to crate **M**1 $25g - R = 25 \times 1.2$ correct equation A1 Any form R = 215 (N) A1

1

1(b)
$$R = 25g = 245$$
 (N) B1

Q	Solution	Mark	Notes
2(a)	Use of <i>v</i> = <i>u</i> + <i>at</i> with <i>u</i> =10, <i>v</i> =24, <i>t</i> =21 24 = 10 + 21 <i>a</i>	M1 A1	oe
	$a = \frac{2}{3} (\mathrm{ms}^{-2})$	A1	accept anything derived
			from $\frac{2}{3}$ rounded correctly

2(b)
$$s = \frac{1}{2}(u+v)t$$
 with v=0, u=24, t=16 M1 oe
 $s = \frac{1}{2} \times 24 \times 16$ A1
 $s = \underline{192} \text{ (m)}$ A1

2(c)

- B1 (0, 10) to (21, 24)
- B1 (21, 24) to (21+*T*, 24)
- B1 (21+T, 24) to (37+T, 0)
- B1 all labels, units and shape.
- 2(d) Area under graph = 150000.5(10+24)21 + 24T + 192 = 15000

24T = 14451T = 602(.125)

- M1 used
- A1 ft (b)
- B1 0.5(10+24)21 or 24*T* Ft graph
- A1 Accept 600 from correct working. Cao.

Q	Solution	Mark	Notes
3(a)	Resolve perpendicular to plane $R = mg\cos\alpha$ $F = \mu mg\cos\alpha$ $F = 0.6 \times 7 \times 0.8 \times \frac{4}{3}$	M1 m1	sin/cos correct expression
	$F = 0.0 \times 7 \times 9.8 \times \frac{1}{5}$ $F = \underline{32.9(28 \text{ N})}$	A1	Accept rounding to 32.9.
3(b)	Apply N2L to A	M1	dim correct equation Friction opposes motion 4 terms. Accept cos.
	$T + mg\sin\alpha - F = 7a T + 41.16 - 32.928 = 7a T + 8.232 = 7a$	A1	ft (a)
	Apply N2L to B 3g - T = 3a	M1 A1	dim correct equation
	3g + 8.232 = 10a	m1	one variable eliminated Dep on both M's
	$a = 3.7(632 \text{ ms}^{-2})$ T = 18.1(104 N)	A1 A1	cao cao

4.

Take moments about C

 $0.4R_D = 3g \times 0.6 + 12g \times 1.5$ $0.4R_D = 19.8g = 194.04$ $R_D = 49.5g = \underline{485.1 (N)}$

B1	any	1	correct moment.
----	-----	---	-----------------

- M1 dim correct equation. oe
- A1 correct equ any form
- A1 cao

Resolve vertically	M1	equation attempted.
		Or 2^{nd} moment equation.
$R_D = R_C + 15g$	A1	
$R_C = 34.5g = 338.1$ (N)	A1	cao

Alternative solution		
Moment equation about A/centre/B	M1	
Correct equation	B 1	
Second moment equation	M1	
Correct equation	A1	
Correct method for solving simultaneously	m1	Dep on both M's
$R_C = 34.5g = 338.1$ (N)	A1	cao
$R_D = 49.5g = 485.1$ (N)	A1	cao

Q	Solution	Mark	Notes
5(a)	Resolve perpendicular to motion $20\sin 60 + T\sin 30 = 28\sin 60$	M1 A1	equation, sin/cos
	$20\frac{\sqrt{3}}{2} + T \times \frac{1}{2} = 28 \frac{\sqrt{3}}{2}$	A1	convincing
	$I = \underline{8\sqrt{3}}$		
5(b)	N2L in direction of motion	M1	dim correct all forces and No extra force
	$20\cos 60 + T\cos 30 + 28\cos 60 - 16 = 80a$	A2	-1 each error
	$20 \times \frac{1}{2} + 8\sqrt{3} \times \frac{\sqrt{3}}{2} + 28 \times \frac{1}{2} - 16 = 80a$		
	$a = 0.25 (\mathrm{ms}^{-2})$	A1	cao

5(c)	N2L $-16 = 80a$	M1	no extra force
	a = -0.2	A1	accept +/-
	Use of $v = u + at$, $v=4$, $u=12$, $a=(+/-)0.2$	m1	
	4 = 12 - 0.2t	A1	ft if <i>a</i> <0
	t = 40 (s)	A1	ft if a<0

6(a)

Conservation of momentum

 $2 \times 3 - 7 \times 5 = 3v_A + 7v_B$ $3v_A + 7v_B = -29$

Restitution

 $v_B - v_A = -0.6(-5 - 2)$ $v_B - v_A = 4.2$

 $-7v_A + 7v_B = 29.4$ $3v_A + 7v_B = -29$

 $10v_A = -58.4$

$$v_A = (-)5.84$$

 $v_B = (-)1.64$

6(b) Impulse = change of momentum $I = 7v_B - 7(-5)$ I = -11.48 + 35I = 23.52 (Ns)

6(c)
$$3.65 = e(5.84)$$

 $e = 0.625$ B1 ft v_A if > 3.65.

M1 equation required Only one sign error. Ignore common factors A1

M1 v_B , v_A opposing consistent with diagram, +/-7 with the 0.6.

A1

m1	one variable eliminated.
	Dep on both M's.

A1 cao

- A1 cao
- M1 used

A1 ft their v_A or v_B

7.

Resolve horizontally $T_{AB} \sin 60 = T_{AC} \sin 45$ $\frac{\sqrt{3}}{2} T_{AB} = \frac{1}{\sqrt{2}} T_{AC}$ $T_{AB} = \sqrt{\frac{2}{3}} T_{AC}$

Resolve vertically
$T_{AB}\cos 60 + T_{AC}\cos 45 = 9g$
$T_{AB} + \sqrt{2} T_{AC} = 18g$
$\sqrt{\frac{2}{3}} T_{AC} + \sqrt{2} T_{AC} = 18g$

 $T_{AC} = \frac{79.(078) \text{ (N)}}{T_{AB}} = \frac{64.(567) \text{ (N)}}{64.(567) \text{ (N)}}$

Alternative Method Third angle 75°/105°

T_{AB}	9g
sin 45	
$T_{AB} = \frac{Q}{2}$	$\theta g \times \sin 45$
AD -	sin75
$T_{AB} = \underline{\epsilon}$	<u>54.(567) (N)</u>

$$\frac{T_{AC}}{\sin 60} = \frac{9g}{\sin 75}$$
$$T_{AC} = \frac{9g \times \sin 60}{\sin 75}$$
$$T_{AC} = \frac{79.(078) \text{ (N)}}{300}$$

M1 equation, no extra force A1

M1	equation, no extra force
A1	

m1

A1	cao allow 79
A1	cao allow 65

B1

- M1 sine rule attempted
- A1 si
- A1 cao allow 65
- M1 sine rule attempted
- A1 si
- A1 cao allow 79

Q		Solution			Mark	Notes
8(a)		mass	AD	AB		
	ABCD XYZ E F	72 12 24 36	6 6 3 9	3 2 4 4	B1 B1 B1	both E and F correct
	Jewel	120	x	у	B 1	masses in correct proportions.
8(a)(i)	Moments abou	it AD			M1	masses and moments
	$120x + 12 \times 6 =$ 120x = 756	= 72×6 + 24×3 ·	+ 36×9		A1	ft table if triangle subt.
	$x = \frac{63}{10} = \underline{6.30}$	<u>cm)</u>			A1	cao
8(a)(ii)	Moments abou	ut AB			M1	masses & moments consistent
	$120y + 12 \times 2 =$ 120y = 432	= 72×3 + 24×4 +	+ 36×4		A1	ft table if triangle subt.
	$y = \frac{18}{5} = 3.6$ (<u>cm)</u>			A1	cao

8(b)
$$PC = 12 - x$$

 $PC = 5.7 \text{ (cm)}$ B1 ft their x if < 12.

Mark

M1

Notes

1(a) EE =
$$\frac{1}{2} \times \frac{\lambda x^2}{l}$$
, λ =625, x=(+/-)0.1, l=0.2

Q

$$EE = \frac{1}{2} \times \frac{625 \times 0.1^2}{0.2}$$
$$EE = \underline{15.625 (J)}$$
A1

Solution

1(b)
$$KE = \frac{1}{2} \times 0.8v^2 (= 0.4v^2)$$
 B1
WD by resistance = 46 × 0.1 (= 4.6) B1
Work-energy Principle M1 3 terms, no PE.
 $\frac{1}{2} 0.8v^2 + 46 \times 0.1 = 15.625$ A1 FT their EE
 $0.4v^2 = 15.625 - 4.6$
 $0.4v^2 = 11.025$
 $v = \sqrt{\frac{11.025}{0.4}}$
 $v = 5.25 (ms^{-1})$ A1 cao

9

(b)
$$\frac{dv}{dt} = 6t^{-2} - 30$$
$$\frac{6}{t^2} - 30$$
$$\frac{6}{t^2} = 54$$

F - R = ma $30t^{-2} - 150 = 5a$ $6t^{-2} - 30 = a$

Solution

$$t^2$$
$$t = \frac{1}{3}$$

2(c) Integrate w.r.t. t

$$v = -6t^{-1} - 30t (+ C)$$

 $t = \frac{1}{3}, v = 18$
 $18 = -18 - 10 + C$
 $C = 46$
 $v = -6t^{-1} - 30t + 46$

When
$$v = 10$$

 $10 = -\frac{6}{t} - 30t + 46$
 $5t^2 - 6t + 1 = 0$
 $(5t - 1)(t - 1) = 0$
 $t = \frac{1}{5}, 1$

Mark Notes used, F and R opposing. **M**1

A1

Answer given

Ft (a) if same form M1

cao, accept 0.3. A1

M1 Increase in powers A1

A1 cao

10

m1

Q

2(a)

Q	Solution	Mark	Notes
3(a)	$T = \frac{P}{v}, P = 90 \times 1000, v = 4.8$	M1	si
	$T = \frac{90 \times 1000}{4 \cdot 8}$ $T = 18750$	A1	si
	N2L	M1	dim correct, all forces <i>T</i> , <i>R</i> opposing.
	$T - mg \sin\alpha - R = ma$	A1	
	$18750 - 4000 \times 9.8 \times \frac{2}{49} - R = 4000 \times 1.2$	A1	
	$R = 18750 - 1600 - 4800$ $R = \underline{12350 (N)}$	A1	cao
3(b)	N2L with $a = 0$	M1	all forces.
	$T = \frac{90 \times 1000}{v}$	B1	si

$$V$$

 $T - 1600 - 12800 = 0$ A1
 $v = 6.25 \text{ ms}^{-1}$ A1

Q	Solution	Mark	Notes

4(a) $\mathbf{r} = \mathbf{p} + t\mathbf{v}$ M1 used $\mathbf{r}_A = (3-t)\mathbf{i} + (5+2t)\mathbf{j} + (20+t)\mathbf{k}$ A1 $\mathbf{r}_B = (-2+3t)\mathbf{i} + (x-4t)\mathbf{j} + (15+2t)\mathbf{k}$ A1

4(b)
$$\mathbf{r}_{B} - \mathbf{r}_{A} =$$
 M1
 $(-5 + 4t)\mathbf{i} + (x - 5 - 6t)\mathbf{j} + (-5 + t)\mathbf{k}$ A1 ft (a) similar expressions.
 $AB^{2} = x^{2} + y^{2} + z^{2}$ M1
 $AB^{2} = (-5 + 4t)^{2} + (x - 5 - 6t)^{2} + (-5 + t)^{2}$ A1 cao

4(c)	Differentiate	M1	powers reduced
	$\frac{dAB^2}{dt} = 2(-5+4t)(4) + 2(x-5-6t)(-6)$		
	+2(-5+t)(1)		
	-40 + 32t - 12x + 60 + 72t - 10 + 2t = 0	m1	equating to 0.
	106t + 10 = 12x		
	When $t = 5$		
	x = 45	A1	cao

Q Solution Mark Notes
5(a)
$$u_H = \frac{42}{2 \cdot 5} = \underline{16.8 \text{ (ms}^{-1})}$$
 B1
 $s = u_V t + 0.5at^2, s = 3, t = 2.5, a = (\pm)9.8$ M1
 $3 = 2.5u_V - 4.9 \times 2.5^2$ A1
 $u_V = \underline{13.45 \text{ (ms}^{-1})}$ A1 cao, accept 13.4, 13.5.

5(b)
$$v_V = u_V + at, u_V = 13.45, a = (\pm)9.8, t=2.5$$
 M1
 $v_V = 13.45 - 9.8 \times 2.5$ A1 ft from (a)

 $v_V = -11.05$

magnitude of vel =
$$\sqrt{u_H^2 + v_V^2}$$
 m1
= $\underline{20.11 \text{ (ms}^{-1})}$ A1 cao

$$\theta = \tan^{-1} \left(\frac{11 \cdot 05}{16 \cdot 8} \right) \qquad \text{m1}$$

$$\theta = 33.33^{\circ}$$
 (below horizontal) A1 cao

5(c)
$$s = ut + 0.5at^2$$
, $s = 0$, $u=13.45$, $a=(\pm)9.8$ M1
 $0 = 13.45t - 4.9t^2$
 $t = 2.7449$
Distance $= 2.7449 \times 16.8$ m1
Distance $= 46.11$
Required distance $= 46.11 - 42 = 4.11$ (m) A1 cao

Q

6(a)	$\mathbf{a} = \frac{dv}{dt}$	M1	differentiation attempted.
	$\mathbf{a} = 8\cos 2t \mathbf{i} - 75\sin 5t \mathbf{j}$	A1	Vectors required.
	At $t = \frac{3\pi}{2}$, (a = -8 i + 75 j)	m1	substitution of <i>t</i> .
	Magnitude of force = $3 \times \sqrt{8^2 + 75^2}$ = <u>226.28 (N)</u>	M1 A1	or $F = 3(-8i + 75j)$ cao
6(b)	$\mathbf{r} = \int 4\sin 2t \mathbf{i} + 15\cos 5t \mathbf{j} dt$ $\mathbf{r} = -2\cos 2t \mathbf{i} + 3\sin 5t \mathbf{j} (+ \mathbf{c})$ At $t = 0$, $-2\mathbf{i} + 3\mathbf{j} = -2\mathbf{i} + \mathbf{c}$ $\mathbf{c} = 3\mathbf{j}$ $\mathbf{r} = -2\cos 2t \mathbf{i} + 3\sin 5t \mathbf{j} + 3\mathbf{j}$	M1 A1 m1 A1	integration attempted
6(c)	Particle crosses the y-axis when $-2\cos 2t = 0$	M1	

Distance from origin = $3\sin(5 \times \frac{\pi}{4}) + 3$

= 0.88 (m)

© WJEC CBAC Ltd.

 $2t = \frac{\pi}{2}$

 $t = \frac{\pi}{4}$

A1

m1

A1

cao

cao

substitute t into \mathbf{r}

Q	Solution	Mark	Notes
7(a)	Conservation of energy $0.5m(4u)^2 = mg(2l) + 0.5mu^2$ $16u^2 = 4gl + u^2$	M1 A1	
	$u^2 = \frac{4}{15}gl$	A1	convincing

7(b)(i) Conservation of energy	M1
$0.5m(4u)^2 = 0.5mv^2 + mgl(1 - \cos\theta)$	A1
$v^2 = 16u^2 - 2gl + 2gl\cos\theta$	
$v^2 = \frac{34}{15}gl + 2gl\cos\theta$	A1

N2L towards centre of circle m^2

$$T - mg\cos\theta = \frac{mv^2}{l}$$

$$T = \frac{34}{15}mg + 3mg\cos\theta$$

$$T = \frac{mg}{15} (34 + 45\cos\theta)$$

7(b)(ii) when
$$T = 0$$
, $\cos \theta = -\frac{34}{45}$
 $\theta = 139.1^{\circ}$

- m1 If M1s gained, substitute for v^2 .
- A1 any correct form

M1

A1

- M1 putting T = 0 in acos \pm b
- A1 Ft $\cos = a$, a < 0.

Q

Mark

1(a) N2L
$$500 - 100v = 1200 \frac{dv}{dt}$$

 $\frac{dv}{dt} = \frac{500 - 100v}{1200} = \frac{5 - v}{12}$

A1 convincing

1(b)
$$\int 12 \frac{dv}{5 - v} = \int dt$$

-12ln(5 - v) = t + (C)
When t = 0, v = 0, C = -12ln5
 $t = 12 ln \left(\frac{5}{5 - v}\right)$
 $\frac{5}{5 - v} = e^{\frac{t}{12}}$
 $v = 5(1 - e^{-t/12})$

limiting speed = 5 (ms⁻¹)

1(c) When
$$v = 4$$
, $t = 12 \ln \left(\frac{5}{5-4}\right)$
 $t = 12 \ln 5 (= 19.31 \text{s})$

M1 sep. var. (5-*v*) together.

Notes

- A1 correct integration
- m1 allow +/-, oe
- m1 inversion ft similar exp.
- A1 cao
- B1 Ft similar expression

cao

QSolutionMarkNotes2(a)Period =
$$\frac{2\pi}{\omega} = 2$$
M1 $k = \omega = \pi$ A12(b) $x = 0.52\cos\pi t$ B1 $when t = \frac{1}{3}, x = 0.52\cos\frac{\pi}{3}$ B1for amp=0.52When $t = \frac{1}{3}, x = 0.52\cos\frac{\pi}{3}$ M1allow asin/acos, c's a $x = 0.26$ A12(c) $0.4 = 0.52\cos\pi t$ $\cos\pi t = 0.4$ 0.52 A1 $t = 1.78$ 2(d) $v^2 = \omega^2(0.52^2 - x^2)$ $v = \pi(0.48) (= 1.508 \text{ ms}^{-1})$ M1used. oem1sub $x = 0.2$ A1cao

used

cao

2(e)
$$\max v = a\omega$$
 M1
=0.52 π (= 1.634 ms⁻¹) A1

Impulse = change in momentum $J = 2u\cos 30 - 2v$ J = 3v	M1 A1 B1	used
Eliminating J $3v = 2u\cos 30 - 2v$	m1	one variable eliminated
$5v = 2u\cos 30$		
$v = 0.4u \cos^{-1}(\cos^{-1})(\text{speed of } A)$	A1	cao
$J = 1.2 \ u \cos 30 = 8.31$ (Ns)	A1	ft 3 x c's <i>v</i> .
$u_B = u \sin 30 = 4 \ (\mathrm{ms}^{-1})$	B1	
Speed of $B = \sqrt{(2.77^2 + 4^2)}$ Speed of $B = 4.87 \text{ (ms}^{-1})$	m1 A1	cao

Q	Solution	Mark	Notes
4(a)	Auxiliary equation $2m^2 + 6m + 5 = 0$ $m = -1.5 \pm 0.5i$ C.F. is $x = e^{-1.5t} (Asin0.5t + Bcos0.5t)$	B1 B1 B1	ft complex roots
	For PI, try $x = a$ 5a = 1 a = 0.2 GS is $x = e^{-1.5t}(A\sin 0.5t + B\cos 0.5t) + 0.2$	B1 B1	ft CF + a
4(b)	$e^{-1.5t} \rightarrow 0$ as $t \rightarrow \infty$ x tends to 0.2 as t tends to infinity Limiting value = 0.2	M1 A1	si ft similar expression
4(c)(i)	$x = 0.5 \text{ and } \frac{dx}{dt} = 0 \text{ when } t = 0$ B + 0.2 = 0.5 B = 0.3	M1 A1	used cao
	$\frac{dx}{dt} = -1.5e^{-1.5t}(Asin0.5t + Bcos0.5t) + e^{-1.5t}(0.5Acos0.5t - 0.5Bsin0.5t)$ 0 = -1.5B + 0.5A A = 3B = 0.9 $x = e^{-1.5t}(0.9sin0.5t + 0.3cos0.5t) + 0.2$	B1 A1	ft similar expressions cao

4(c)(ii) When
$$t = \frac{\pi}{3}$$

 $x = e^{-\pi/2}(0.9\sin\frac{\pi}{6} + 0.3\cos\frac{\pi}{6}) + 0.2$
 $x = 0.348$ A1 cao

5(a) Using F = ma

$$1200(v+3)^{-1} = 800 \text{ a}$$

 $2v \frac{dv}{dx} = \frac{3}{v+3}$

5(b)
$$\int 3dx = \int 2v(v+3)dv$$

 $3x = \frac{2v^3}{3} + 3v^2 + (C)$

x = 0, v = 0, hence C = 0 When v = 3, 3x = 18 + 27x = 15

$$5(c) \qquad \frac{dv}{dt} = \frac{3}{2(v+3)}$$
$$\int 2(v+3)dv = \int 3dt \qquad M1$$
$$v^2 + 6v = 3t + (C) \qquad A1$$

$$t = 0, v = 0$$
, hence $C = 0$ B1

When
$$v = 3$$

 $3t = 9 + 18 = 27$
 $t = 9$

5(d)(i)
$$v^2 + 6v - 3t = 0$$

 $v = 0.5(-6 \pm \sqrt{6^2 - 4 \times -3t}))$
 $v = -3 + \sqrt{9 + 3t}$
(ii) $\frac{dx}{dt} = -3 + (9 + 3t)^{\frac{1}{2}}$

$$\begin{aligned} x &= -3t + \frac{2}{9}(9+3t)^{\frac{3}{2}} + (C) \\ x &= 0, t = 0, \text{ (hence } C = -6) \\ x &= -3t + \frac{2}{9}(9+3t)^{\frac{3}{2}} + (-6) \\ \end{aligned}$$
When $t = 7$
 $x = -21 - 6 + 2 \times 30^{1.5}/9 = 9.5148$
 $x \text{ is approximately } 9.5$

M1	
Al	convincing
M1	separate variables
A1	correct integration
R 1	
m1	

Notes

Mark

A1 convincing

A1 cao

M1	recognition of quadratic
	And attempt to solve
A1	si

A1

M1

A1 correct integration

m1

A1 cao

Q	Solution	Mark		Notes
5(d)(ii)v =	$-3 + \sqrt{(9+3t)}$			
Whe	$t = 7, v = -3 + \sqrt{(9+21)}$	M1		
	$v = -3 + \sqrt{30}$	A1	si	
	<i>v</i> = 2.4723			
<i>x</i> =	$\frac{2}{9}(-2.4723)^3 + (2.4723)^2$	m1		
x =	9.51 (m)	A1	cao	

Solution

Notes

B2	B1 if one error.
B0	more than one error.

6(b)	Resolve vertically
	R = 12g + 70g = 82g

6(c)	Moments about <i>B</i>
	$3T\sin75 + 12g \times 4\cos75 + 70gx \times \cos75$
	= 8Ssin75

M1 dim correct equation

all forces

M1

A1

All terms

A4 -1 each incorrect term Accept *T*=100.

Resolve horizontally T + F = SF = 0.1R = 8.2g**B**1 ft *R* S = T + 8.2g**B**1 ft F $8(8.2g+T)\sin 75 - 3T\sin 75 - 48g\cos 75$ $=70gx\cos75$ $5T\sin75 =$ $48g\cos 75 - 65.6g\sin 75 + 70gx\cos 75$ T = 100*x* = 5.53 m A1 cao

Q	Solution	Mark	Notes
	<u>OR</u>		
	Moments about A	M1	dim correct equation All terms
	$5T\sin75 + 12g \times 4\cos75 + 70g(8-x) \times \cos75 + 8F\sin75 = 8R\cos75$	A5	-1 each incorrect term $A_{ccept} T = 100$
	F = 0.1R = 80.36 N	B1	Ft R
	T = 100 x = 5.53 m	A1	cao

6(d) Ladder modelled as a rigid rod. B1

Ques	Solution	Mark	Notes
1(a)	EITHER $P(A \cap B) = P(A) + P(B) - P(A \cup B)$ $= 0.2$	M1 A1	Award M1 for using formula
(b)	This is not equal to $P(A) \times P(B)$ therefore not independent.	A1	
	Assume A,B are independent so that $P(A \cap B) = P(A) + P(B) - P(A)P(B)$ $= 0.58$	M1 A1	Award M1 for using formula
	Since $P(A \cup B) \neq 0.58$, A,B are not independent.	A1	
	$P(A \mid B') = \frac{P(A \cap B')}{P(B')}$	M1	Award M1 for using formula
	$=\frac{0.3-0.2}{0.6}$	A1	FT their $P(A \cap B)$ if independence not assumed
	$=\frac{1}{6}$	A1	Accept Venn diagram
2	np = 0.9, npq = 0.81 Dividing, $q = 0.9, p = 0.1$ n = 9	B1B1 M1A1 A1	
3(a)	$P(1 \text{ of each}) = \frac{3}{9} \times \frac{3}{8} \times \frac{3}{7} \times 6 \text{ or } \begin{pmatrix} 3\\1 \end{pmatrix} \times \begin{pmatrix} 3\\1 \end{pmatrix} \times \begin{pmatrix} 3\\1 \end{pmatrix} \div \begin{pmatrix} 9\\3 \end{pmatrix}$	M1A1	M1A0 if 6 omitted
	$=\frac{9}{28}$	A1	
(b)	P(2 particular colour and 1 different) = $\frac{3}{9} \times \frac{2}{8} \times \frac{6}{7} \times 3 \text{ or } \begin{pmatrix} 3\\2 \end{pmatrix} \times \begin{pmatrix} 6\\1 \end{pmatrix} \div \begin{pmatrix} 9\\3 \end{pmatrix}$	M1A1	M1A0 if 3 omitted
	$=\frac{3}{14}$	A1	Allow 3/28
	P(2 of any colour and 1 different) = $\frac{9}{14}$	B1	FT previous line
4(a)	Let X denote the number of goals scored in the first 15 minutes so that X is $Po(1.5)$ si	B1	
	$P(X=2) = \frac{e^{-10} \times 1.5^{2}}{2!}$ = 0.251	M1 A1	Award M0 if no working seen
(b)	$P(X > 2) = 1 - e^{-1.5} \left(1 + 1.5 + \frac{1.5^2}{2!} \right)$	M1A1	
	= 0.191	A1	

24

Ques	Solution	Mark	Notes
5(a)	Let X = number of female dogs so X is B(20,0.55)	B1	si
(i)	$P(X = 12) = {\binom{20}{12}} \times 0.55^{12} \times 0.45^{8}$ $= 0.162$	M1 A1	Accept 0.4143 – 0.2520 or 0.7480 – 0.5857
(ii)	Let $Y =$ number of male dogs so Y is B(20,0.45) P(8 $\leq X \leq 16$) = P(4 $\leq Y \leq 12$) = 0.9420 - 0.0049 or 0.9951 - 0.0580 = 0.9371	M1 A1 A1A1 A1	Award M0 if no working seen
(b)	Let U = number of yellow dogs so U is B(60,0.05) \approx Po(3) P($U < 5$) = 0.8153	M1 m1A1	
6(a)	$P(head) = \frac{3}{4} \times \frac{1}{2} + \frac{1}{4} \times 1$ $= \frac{5}{8}$	M1A1 A1	M1 Use of Law of Total Prob (Accept tree diagram)
(b)(i)	$P(DH head) = \frac{1/4}{5/8}$ $= \frac{2}{5} cao$	B1B1 B1	B1 num, B1 denom FT denominator from (a)
(ii)	EITHER $P(head) = \frac{3}{5} \times \frac{1}{2} + \frac{2}{5} \times 1$ $= \frac{7}{10}$	M1A1 A1	M1 Use of Law of Total Prob (Accept tree diagram)
	OR P(Head) = $\frac{\frac{3}{4} \times \frac{1}{2} \times \frac{1}{2} + \frac{1}{4} \times 1}{\frac{5}{8}}$ = $\frac{7}{10}$	B1B1 B1	B1 num, B1 denom FT denominator from (a)

Ques	Solution	Mark	Notes
7(a)	[0,0.4]	B1	Allow(0,0.4)
(b)	$E(X) = 0.1 + 0.6 + 3\theta + 0.8 + 5(0.4 - \theta)$ = 3.5 - 2\theta The range is [2.7,3.5]	M1 A1 A1	FT the range from (a)
(c)	$E(X^{2}) = 0.1 + 1.2 + 9\theta + 3.2 + 25(0.4 - \theta)$ Var(X) = 0.1 + 1.2 + 9\theta + 3.2 + 25(0.4 - \theta) - (3.5 - 2\theta)^{2} = 2.25 - 2\theta - 4\theta^{2} Var(X) = 1.5 gives	M1A1 M1 A1 M1 A1	Must be in terms of θ
	$4\theta' + 2\theta - 0.75 = 0$ $16\theta^{2} + 8\theta - 3 = 0$ $(4\theta + 3)(4\theta - 1) = 0$ $\theta = 0.25$	M1 A1	Allow use of formula
8(a)	EITHER the sample space contains 64 pairs of which 8 are equal OR whatever number one of them obtains, 1 number out of 8 obtained by the other one gives equality.	M1	
	$P(equal numbers) = \frac{1}{8}$	A1	
(b)	The possible pairs are (4,8);(5,7);(6,6);(7,5);(8,4) EITHER the sample space contains 64 pairs of	B1	
	which 5 give a sum of 12 OR each pair has probability 1/64.	M1	
	$P(sum = 12) = \frac{5}{64}$	A1	
(c)	EITHER reduce the sample space to (4,8);(5,7);(6,6);(7,5);(8,4) OR $P(\text{equal numbers}) = \frac{P(6,6)}{P(\text{sum}=12)} = \frac{1/64}{5/64}$	M1	
	Therefore P(equal numbers) = $\frac{1}{5}$	A1	

Ques	Solution	Mark	Notes
9(a)(i)	$P(0.4 \le X \le 0.6) = F(0.6) - F(0.4)$	M1	
	= 0.261	A1	
(ii)	The median <i>m</i> satisfies		
	$2m^3 - m^6 = 0.5$	B1	
	$2m^6 - 4m^3 + 1 = 0$		
	$m^3 = \frac{4 \pm \sqrt{8}}{4}$ (0.293)	M1A1	Award M1 for a valid attempt to
	m = 0.664	A1	Do not award A1 if both roots
(b)(i)	Attempting to differentiate $F(x)$	M1	given
(ii)	$f(x) = 6x^2 - 6x^2$		$\mathbf{M} = \{\mathbf{x}_1, \mathbf{y}_2, \mathbf{y}_3, \mathbf{y}_4, \mathbf{y}_5, \mathbf{y}$
(11)	$E(X^{3}) = \int_{0}^{1} x^{3} (6x^{2} - 6x^{5}) dx$	M1A1	A1 for completely correct
	$= \left[\frac{6x^6}{6} - \frac{6x^9}{9}\right]_{0}^{1}$	A1	although limits may be left until 2^{nd} line. FT their $f(x)$ if M1 awarded in (i)
	= 1/3	A1	

Ques	Solution	Mark	Notes
1	= 405.6 (= 50.7)	B1	
	$x = \frac{1}{8}$ (= 50.7)		
	SE of $\overline{X} = \frac{4}{\sqrt{2}}$ (= 1.4142)	M1A1	
	vo 90% conflimits are		
	$50.7 \pm 1.645 \times 1.4142$	M1A1	M1 correct form, A1 correct <i>z</i> .
	giving $[48.4, 53.0]$ cao	A1	Award M0 if no working seen
2(a)	Upper quartile = mean $+ 0.6745 \times SD$	M1	
	= 86.0	A1	
(b)	Let <i>X</i> =weight of an orange, <i>Y</i> =weight of a lemon		
	$E(\Sigma X) = 1984$	B1	
	$\operatorname{Var}(\Sigma X) = 512$	B1	
	$z = \frac{2000 - 1984}{\sqrt{512}} = 0.71$	M1A1	Award M0 if no working seen
	Prob = 0.7611 cao	A1	
(c)	Let $U = X - 3Y$	M1	
	E(U) = -7	A1	
	$Var(U) = 64 + 9 \times 2.25 = 84.25$	M1A1	
	We require $P(U > 0)$		
	$z = \frac{0+7}{2} = 0.76$	m1A1	Award m0 if no working seen
	$\sqrt{84.25}$		
	Prob = 0.2236	A1	
2()		D1	
3(a)	$H_0: \mu_M = \mu_F; H_1: \mu_M \neq \mu_F$	R1	
(b)	Let X = male weight, Y =female weight		
	$(\sum x = 39.2; \sum y = 46.6)$		
	$\overline{x} = 4.9; \overline{y} = 4.66$	B1B1	
	$0.5^2 - 0.5^2$		
	SE of diff of means= $\sqrt{\frac{38}{8} + \frac{38}{10}}$ (0.237)	M1A1	
	Test statistic = $\frac{4.9 - 4.66}{2}$	m1	Award m0 if no working seen
	0.237		
	= 1.01	AI A1	
	Prob from tables = 0.1562	AI R1	ET line chouse
	p-value = 0.5124 Insufficient evidence to conclude that there is a	DI	F1 line above
	difference in mean weight between males and	B1	FT their <i>p</i> -value
	females.		r i mon p varae

Ques	Solution	Mark	Notes
4(a)(i)	$H_0: p = 0.6; H_1: p < 0.6$	B1	
(;;)			
(11)	Let $X =$ Number of games won	D 1	
	Under H_0 , X is B(20,0.6) si Let $V = Number of games lost$	BI	
	Under H ₀ , V is $B(20.0.4)$	R1	
	p-value = P(X < 7 (X is B(20.0.6)))	M1	Award M0 if no working seen
	$= P(Y \ge 13 Y \text{ is } B(20, 0.4))$	A1	6
	= 0.021	A1	
	Strong evidence to reject Gwilym's claim (or to	D1	
(b)	accept Huw's claim).	BI	FT on p-value
(0)	$V_{15} n_{0W} B(80.0.6) (under H_{e}) \sim N(48.10.2)$	D1D1	
	$n_{\rm rvalue} = P(X < 37 X \text{ is } N(48, 19, 2))$	BIBI M1	Award M0 if no working seen
	$p^{-value} = 1 (X \le 57 X \ 15 \ 10(40, 19.2))$ 37 5 - 48	IVII	
	$z = \frac{3710}{\sqrt{19.2}}$	A1	Award M1A0A1 for incorrect or
	= -2.40	A 1	no continuity correction No cost $z = -2.51$ m = 0.00604
	p-value = 0.0082	A1 A1	$365 \cdot 7 = -2.62$ $p = 0.00004$
	Very strong evidence to reject Gwilym's claim (or	D1	FT on p-value only if less than
	to accept Huw's claim).	BI	0.01
5(a)	E(X) = E(Y) = 1.2	B1	
	E(U) = E(X)E(Y) = 1.44 cao	DI	
(b)	$\operatorname{Var}(X) = \operatorname{Var}(Y) = 0.96$	R1	
	$F(X^2) = F(Y^2) = Var(X) + [F(X)]^2 = 2.4$	M1A1	FT their values from (a)
	$Var(I) = E(X^{2}Y^{2}) - [E(XY)]^{2}$	N/1	
	$- E(X^{2})E(Y^{2}) - [E(X)E(Y)]^{2}$	A1	
	-3.69 cao		
6(a)(i)	= 5.07 cub	Al B1	
0(a)(1)	Under H_0 , X is PO(15) si	BI B1	Award B1 for either correct
	$P(X \le 10) = 0.1185; P(X \ge 20) = 0.1248$	B1	
	Significance level = 0.2433		
(ii)	X is now Poi(10)	R1	
	$P(\text{accept } H_0) = P(11 \le X \le 19)$	M1	Award M0 if no working seen
	= 0.9965 - 0.5830 or $0.4170 - 0.0035$	A1	
	= 0.4135 cao	A1	
(b)			
	Under H_0 , X is now Po(75) \approx N(75,75)	B1	
	$z = \frac{91.5 - 75}{5} = 1.91$	M1A1	Award M1A0 for incorrect or no
	$\sqrt{75}$		continuity correction but FT
	Prob from tables = 0.0281	A1	further work.
	p-value = 0.056	A1	FT from line above
	Insumicient evidence to reject H_0	RI	F1 from line above No co gives $z = 1.06$, $z = 0.5$
			1NO CC gives $z = 1.90, p = .05$ 92.5 gives $z = 2.02, p = 0.0434$
			2.5 gros z = 2.02, p = 0.0454

Ques	Solution	Mark	Notes
7(a)	$P(L \le 4) = P(A \le 4^2)$	M1	
	$=\frac{16-15}{20-15}$	A1	
	= 0.2	A1	
(b)	$E(L) = E(A^{1/2})$		
	$=\int a^{1/2} \times \frac{1}{2} da$	M1A1	Limits can be left until next line
	J 5		
	$=\frac{2}{15}\left[a^{3/2}\right]_{15}^{20}$	A1	
	= 4.18	A1	Do not accept $\sqrt{17.5} = 4.18$
(c)	$Var(L) = E(L^{2}) - [E(L)]^{2}$ = 17.5 - 4.18 ² = 0.03	M1 A1 A1	FT their E(<i>L</i>)

\$3	
00	

Ques	Solution	Mark	Notes
1	$\overline{x} = 52.0$ si	B1	
	Variance estimate = $\frac{162480}{59} - \frac{3120^2}{60 \times 59} = 4.068$	M1A1	
	(Accept division by 60 which gives 4.0)		
	90% confidence limits are	3.54.4.4	
	$52\pm1.645\sqrt{4.068/60}$	MIAI A1	
	giving [51.6,52.4]	А	
2(a)	$H_0: \mu = 4.5; H_1: \mu \neq 4.5$	B1	
(b)	$\sum x = 43.6; \sum x^2 = 190.3428$	B1B1	
	$\overline{\text{UE}} \text{ of } \mu = 4.36$	B1	No working need be seen
	$190.3428 43.6^2$		
	$0E \text{ of } \sigma = \frac{9}{9} - \frac{90}{90}$		A norman and u no montra
	= 0.0274(22)	AI	Answer only no marks
(c)			
	test-stat = $\frac{4.36 - 4.5}{\sqrt{2}}$	M1A1	FT their values from (b)
	√0.0274222/10		
	= -2.67 (Accept +2.67)	A1 P1	Answer only no marks
	D1 = 3.81 Crit value = 3.25	B1 B1	
	This result suggests that we should accept H_0 , ie	B1	FT their <i>t</i> -statistic
	that the mean weight is 4.5 kg	De	i i men i statistic
	because 2.67 < 3.25	BI	
3(a)	. 654	B1	
	$\hat{p} = \frac{68.1}{1500} = 0.436$ si		
	$\sqrt{0.436 \times 0.564}$		
	$ESE = \sqrt{\frac{0.150 \times 0.501}{1500}} = 0.0128$ si	M1A1	
	95% confidence limits are	M1	M1 correct form
	$0.436 \pm 1.96 \times 0.0128$	A1	A1 correct <i>z</i>
	giving [0.41,0.46]	A1	
(b)	0.4249 + 0.4952		
	$\hat{p} = \frac{0.4348 + 0.4852}{2} = 0.46$	B1	
	Number of people = $0.46 \times 1200 = 552$	B1	
	$0.4852 - 0.4348 = 2z \sqrt{\frac{0.46 \times 0.54}{1200}}$	M1A1	
	z = 1.75	A1	
	Prob from tables = 0.0401 or 0.9599	A1	
	Confidence level $= 92\%$	B1	FT line above

Ques	Solution	Mark	Notes
4(a)	$H_0: \mu_a = \mu_b; H_1: \mu_a \neq \mu_b$	B1	
(b)	$SE = \sqrt{\frac{0.115}{80} + \frac{0.096}{70}} (= 0.053)$	M1A1	
	Test stat = $\frac{3.65 - 3.52}{0.053}$	M1A1 A 1	
	Tabular value = 0.00714 (0.00695)	A1	
	p-value = 0.01428 (0.0139)	A1	
	Strong evidence to conclude that there is a difference in mean weight.	B1	FT their <i>p</i> -value Accept the conclusion that the Variety B mean is greater than
(c)	Estimates of the variances of the sample means are used and not exact values.	B1	the Variety A mean
	The sample means are assumed to be normally distributed (using the Central Limit Theorem).	B1	
5(a)	$\sum x = 42, \sum x^2 = 364, \sum y = 340.6, \sum xy = 2906.4$	B2	Minus 1 each error
	$S_{xy} = 2906.4 - 42 \times 340.6 / 6 = 522.2$	B1	
	$S_{xx} = 364 - 42^2 / 6 = 70$	B1	
	$b = \frac{522.2}{70} = 7.46$	M1 A1	Answers only no marks
	$a = \frac{340.6 - 7.46 \times 42}{6} = 4.55$	M1 A1	
(b)(i)	Unbiased estimate = $a + 5b = 41.85$	B1	FT their values of and a, b if
(ii)	SE of $a + 5b = 0.5\sqrt{\frac{1}{6} + \frac{(5-7)^2}{70}}$ (0.2365)	M1A1	answer between 33.9 and 49.9 And FT their value of S_{xx}
	95% confidence limits for $\alpha + 5\beta$ are 41.85±1.96×0.2365 giving [41.4,42.3]	m1A1 A1	
(iii)	Test stat = $\frac{7.6 - 7.46}{\sqrt{0.5^2/70}} = 2.34$	M1A1	FT their values of <i>b</i> and S_{xx} if
	Critical value = 1.96 or p-value = 0.01928	A1	FT their test statistic
	We conclude that $\beta = 7.6$ is not consistent	D1	FT the line above
	with the tabular values.	р1	

Ques	Solution	Mark	Notes
6(a)(i)	$E(Y) = kE(\overline{X}) = kE(X) = \frac{k\theta}{2}$ For an unbiased estimator, $k = 2$.	M1A1 A1	
(ii)	$\operatorname{Var}(Y) = 4\operatorname{Var}(\overline{X})$	M1	FT their <i>k</i>
	$=\frac{4}{n}\operatorname{Var}(X)$	A1	
	$= \frac{4}{n} \times \frac{\sigma}{12}$	A1	
	$=\frac{3}{3n}$	A1	
(b)(i)	$SE = \frac{\theta}{\sqrt{3n}}$	A1	
	Using Var(Y) = $E(Y^2) - [E(Y)]^2$	M1	
	$E(Y^2) = \frac{\theta^2}{3n} + \theta^2$	A1	
	$\neq \theta^2$ therefore not unbiased	B1	FT the line above
(ii)	$E(Y^2) = \theta^2 \left(\frac{3n+1}{3n}\right)$	M1	
	$E\left(\frac{3nY^2}{3n+1}\right) = \theta^2$	A1	
	Therefore $\frac{3nY^2}{3n+1}$ is an unbiased estimator for θ^2	A1	

GCE Mathematics M1-M3 & S1-S3 MS Summer 2014

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>